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The concept of VVC

* Volt/VAR control (VVC) refers to the process of managing voltage
levels and reactive power (VAR) throughout the distribution
systems.

* VVC can improve voltage profiles for all end-use customers and
achieve multiple objectives, such as real power losses and voltage
deviation.
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Fig. 1 VVC Application Demonstration [1]

[1] Office of Electricity Delivery and Energy Reliability, “Voltage and VAR Control Impact Analysis Approach”, U.S. Department of Energy, [online]:
https://www.smartgrid.gov/files/Distribution_System Energy Efficiency 17Novll.pdf
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VVC Devices

Conventionally, there are three devices for carrying out voltage

management:
* Substation Transformers with Load tap changer (LTC)

* In-line voltage regulators
* Capacitor banks (CBs)

Tap changer inside a Three-phase voltage regulator Capacitor bank
transformer

[1] Office of Electricity Delivery and Energy Reliability, “Voltage and VAR Control Impact Analysis Approach”, U.S. Department of Energy, [online]:
https://www.smartgrid.gov/files/Distribution_System Energy Efficiency 17Nov11.pdf

IOWA STATE UNIVERSITY



Basic Voltage Regulation with an LTC

Line voltage drops from the LTC at the head of the distribution line to
customers farther out on the line [1].
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[1] Office of Electricity Delivery and Energy Reliability, “Voltage and VAR Control Impact Analysis Approach”, U.S. Department of Energy, [online]:
https://www.smartgrid.gov/files/Distribution_System Energy Efficiency 17Nov11.pdf
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Coordinated LTC and Voltage Regulator

A voltage regulator can boost (raise) or buck (lower) voltage at a
point on the distribution line and regulate down-line voltage [1].
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[1] Office of Electricity Delivery and Energy Reliability, “Voltage and VAR Control Impact Analysis Approach”, U.S. Department of Energy, [online]:
https://www.smartgrid.gov/files/Distribution_System Energy Efficiency 17Nov11.pdf
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Coordinated LTC, Regulator and Capacitor Bank

A CB can help regulation by compensating for the lagging power
factor of load and the line 1tself [1].
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[1] Office of Electricity Delivery and Energy Reliability, “Voltage and VAR Control Impact Analysis Approach”, U.S. Department of Energy, [online]:
https://www.smartgrid.gov/files/Distribution_System Energy Efficiency 17Nov11.pdf
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Conventional and Emerging VVC Devices

« Conventional VVC devices
- Transformers with LTC
- Cap banks
- Volt regulators

- Mechanical devices, slow, discrete changes, time
delays between two changes, easy to control, not
many in a feeder

- Emerging VVC devices
- Smart inverters

- Continuous output, fast/instantaneous, capacity
limits, numerous in a feeder

IOWA STATE UNIVERSITY



VVC and Smart Inverters

Traditionally, distributed solar photovoltaics (PV) systems were
installed with standard inverters that only output active power.

Recently, however, PV is increasingly be paired with smart inverters
that can also supply or absorb reactive power [2].

* With this ability to provide reactive power, distributed PV has
the potential to support and actively regulate local voltage
and power factor on the grid.

* This local smart inverter control can be done through various
smart inverter modes, which include fixed power factor
configuration or autonomously controlling the reactive power
output based on the local voltage.

[2] Ding, Fei, et al. Photovoltaic impact assessment of smart inverter volt-var control on distribution system conservation voltage reduction and power quality. No.
NREL/TP-5D00-67296. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2016.

IOWA STATE UNIVERSITY



Control Architecture of VVC

According to the control architecture, the VVC method can
be classified into three categories:
* Decentralized (local) VVC

* Centralized VVC
* Hierarchical VVC
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Fig. 1 VVC architecture: (a) Decentralized VVC; (b) Centralized VVC; (¢) Hierarchical VVC [3]

[3]1 Q. Li, Y. Zhang, T. Ji, X. Lin and Z. Cai, "Volt/Var Control for Power Grids With Connections of Large-Scale Wind Farms: A Review," in IEEE Access, vol. 6,

pp- 26675-26692, 2018.
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Decentralized VVC

Decentralized VVC [3]:
* Local Volt/VAR controllers receive local or partial information of power system
states;
* Decide the control decisions of the local devices for VVC.
* For example, the control inputs can include voltage references of PV buses,
reactive power output references of PQ buses and control instructions of
reactive power compensators

It 1s worth mentioning that researchers are paying attention to distributed VVC.
Similar to decentralized VVC, the control decisions are made by local volt/var
controllers in distributed VVC.
* The difference between decentralized VVC and distributed VVC:
- each local VVC controller in distributed VVC can exchange information
with the other local controllers,
- while the VVC controllers in decentralized VVC can only receive
information.

[3]1 Q. Li, Y. Zhang, T. Ji, X. Lin and Z. Cai, "Volt/Var Control for Power Grids With Connections of Large-Scale Wind Farms: A Review," in IEEE Access, vol. 6,
pp- 26675-26692, 2018.
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Decentralized VVC
* Advantages:

- Simple and easy to implement
- Does not require complicated computation and system-wide
communication
* Disadvantages:
- Cannot consider the intermittent and fluctuating output of DERs for
VVC from a system-wide perspective
- Hard to achieve an optimal control due to lack of full observation of
system states and lack of information exchange between local
controllers
* Application:
- Simple VVC when computation and communication capability in the
power system 1s low
* Challenge:
- How to achieve system-wide optimization with partial or local
information of power system states

[3]1 Q. Li, Y. Zhang, T. Ji, X. Lin and Z. Cai, "Volt/Var Control for Power Grids With Connections of Large-Scale Wind Farms: A Review," in IEEE Access, vol. 6,
pp- 26675-26692, 2018.
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Centralized VVC

Centralized VVC [3]:

* A central controller receives all the information of power system states.

* Then decides and send back the control inputs of all the devices for VVC in the
system.

Advantages:
* Can achieve a system-wide optimization
 Can cope with various challenges presented by DERs to VVC from a
system-wide perspective
Disadvantages:
* Requires high capacity of computation and communication
* Inflexible to coordinate different device characteristics
Application:
* System-wide optimal reactive power dispatch, when the computation and
communication capacity in the power system is sufficient high
* The central controller can obtain whole information of system states and
control all available VVC devices

[3]1 Q. Li, Y. Zhang, T. Ji, X. Lin and Z. Cai, "Volt/Var Control for Power Grids With Connections of Large-Scale Wind Farms: A Review," in IEEE Access, vol. 6,
pp- 26675-26692, 2018.
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Hierarchical VVC

Hierarchical VVC [3]:

* Multiple Volt/VAR controllers are organized in a hierarchical structure.

* All the controllers can receive partial or all the information of power
system states.

* The controller at a lower layer complies with the decision made by the
controller at the upper layer.

There are usually two ways to realize the hierarchical VVC :

 The controller at the lower layer adjusts its control inputs at a high
frequency while the controller at the upper layer does it at a low
frequency.

* The controller at the lower layer fulfills the requirements received from
the controller at the upper layer and sends necessary information to the
controller at the upper layer.

[3]1 Q. Li, Y. Zhang, T. Ji, X. Lin and Z. Cai, "Volt/Var Control for Power Grids With Connections of Large-Scale Wind Farms: A Review," in IEEE Access, vol. 6,
pp- 26675-26692, 2018.
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Hierarchical VVC

Advantages:
- Has all advantage of centralized VVC
- Flexible to coordinate different device characteristic
Disadvantages:
- Requires high capacity of computation and communication
- Complicated to design and implement
Application:

- System-wide optimal reactive power dispatch considering
coordination of different regulation characteristic between discrete
devices and continuous device, when the computation and
communication capacity in the power system is sufficiently high

Challenge:

- How to improve calculation efficiency for optimal reactive power
dispatch in large-scale power system with uncertain DERs

-  How to design the coordination of controllers at different layers

[3]1 Q. Li, Y. Zhang, T. Ji, X. Lin and Z. Cai, "Volt/Var Control for Power Grids With Connections of Large-Scale Wind Farms: A Review," in IEEE Access, vol. 6,
pp- 26675-26692, 2018.
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Volt/VAR Optimization Model

Volt/VAR optimization (VVO) is an advanced function, which coordinates
VVC devices to achieve the utility’s operational objectives :

Minimization of power/energy losses

*  Minimization of voltage deviation

Minimization of peak load

*  Minimization of switching operations of VVC devices

Subject to the operating constraints of system and devices
* Real and reactive power balance
* Real and reactive line flow limits
*  Bus voltage limits
* Device operating constraints
* (B switching on/off limits
 LTC tap position changing limits
* Inverter (reactive) power output limits
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Conservation Voltage Reduction

Conservation voltage reduction (CVR) lowers distribution voltage
levels to reduce peak demand and energy consumption.

ANST Service Voltage  American National Standards Institute
i (ANSI) Standard C84.1 set the range for
126 V voltages at the distribution transformer
secondary terminals at 120 V+ 5% or
Mithout OR between 114V and 126V.

120 V * CVR works on the principle that the
acceptable voltage band can be easily and
I inexpensively operated in the lower half
With CVR (114-120V), without causing any harm to

114V consumer appliances.

Fig.2 Reduce the supplied voltage from 122V to 116V [4]

[4] K. Warner, and R. Willoughby, National Assessment of CVR-Preliminary Results from DOE’s CVR Initiative, IEEE Smart Grid Webinar, Sep. 11, 2014.
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CVR: load models

Nature of CVR
* Load 1s sensitive to voltage
* Load-to-voltage sensitivity varies
The ZIP model is a load which 1s composed of constant impedance (Z), constant

current (I) and constant power (P) elements.
Tab.1 ZIP values of various end use loads (100V to 126V) [5]

Appliance 7% 1% P%
Induction Motor
Oscillating Fan 73.32% 25.34% 1.34%
Display
Magnavox TV 0.15% 82.66% 17.19%
Dell Liquid Display -40.70% 46.29% 94.41%
Lighting
Compact Fluorescent 40.85% 0.67% 58.48%
Light (13W)
Compact Fluorescent 48.67% -37.52% 88.85%
Light (42W)

[5] Schneider, Kevin P., et al. Evaluation of conservation voltage reduction (CVR) on a national level. No. PNNL-19596. Pacific Northwest National Lab.(PNNL), Richland,
WA (United States), 2010.

IOWA STATE UNIVERSITY



CVR: benefits

Consumers can benefit from the reduced energy consumption from
CVR. Utilities may lose revenues, which is a common problem for
many demand response programs.

The CVR benefits for utilities can be summarized as [6]:

* Peak loading relief of distribution systems

* Net loss reduction considering both the transformers and
distribution lines

* Potential incentives and requirements from regulatory bodies
(e.g., California Public Utilities Commission)

* Increase social welfare such as fuel consumption and
emission reduction

* Combine with system improvements to achieve optimal
Volt/VAR control

[6] Z. Wang and J. Wang, "Review on Implementation and Assessment of Conservation Voltage Reduction," /IEEE Transactions on Power Systems, vol. 29, no. 3, pp.
1306-1315, May 2014.
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CVR: effect assessment

The importance of CVR effect assessment
* Select target feeders to apply CVR
* Perform cost/benefit analysis

Pcvreofp)

CVR effects can be evaluated by CVR:

=
=
CVR % Load Change g-
I o Voltage Reduction 2
_(PcvRr(off)—PcvR(on))/PcvReoff) 8
(Vevrorf)=Vevron))/Vevroff) =
(=) !
= T1 | T2 T3
. >
Time

The major challenges to quantify CVR effects 1s to distinguish the
changes in load and energy consumption due to voltage reduction from
other impact factor.

[6] Z. Wang and J. Wang, "Review on Implementation and Assessment of Conservation Voltage Reduction," IEEE Transactions on Power Systems, vol. 29, no. 3, pp.
1306-1315, May 2014.
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CVR: effect assessment

CVR Assessment methods:
* Comparison method
 w/ and w/o CVR test on two similar feeder in the same
period
* Regression method
* loads are modeled as (multivariate) regression function of
impact factors (voltage, weather information, load
consumptions of different days of the week and the month)
* Synthesis method
» aggregate load-to-voltage behaviors from load components
or customer classes to estimate the CVR effects of a circuit
e Simulation method

* based on system modeling and power calculation
* w/and w/o CVR test

[6] Z. Wang and J. Wang, "Review on Implementation and Assessment of Conservation Voltage Reduction," IEEE Transactions on Power Systems, vol. 29, no. 3, pp.
1306-1315, May 2014.
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Existing Methodologies for CVR Assessment

Methods Summary Positive Attributes Negative Attributes
: Compare load consumption of a Easy and Dependent on control
Comparison . :
test feeder and a control group straightforward group, noise vulnerable

Estimate what load would have

: been without CVR : : Regression error, load
Regression Clear physical meaning .
model is linear

P = g1+ BT, 1-T]+ S,[T, 1-T]

: Maybe highly precise ~ Precise load modeling
Simulation Estimate what load would have (depends on model is difficult, load model

been without CVR e :
accuracy) 1s time-invariant

Accurate load

Aggregate measured load information is difficult

Synthesis bEhayion fgélsifit;né%ﬁr; ?fr:jt to collect, load
E,(V)= ZiEi (S, behaviors are time-
CVR, = RCVR, + CCVR. + ICVR, invariant

[4] Z. Wang and J. Wang, "Review on Implementation and Assessment of Conservation Voltage Reduction," IEEE Transactions on Power Systems, vol. 29, no. 3, pp. 1306-
1315, May 2014.
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CVR Challenges

Existing approaches:
* Comparison method
* Easy and straightforward
» Difficult to find a good control
group
* Regression method
e Clear physical meaning

e Linear model and regression error

—W/ CVR
—W/O CVR (Control Group

4.2

12:00 14:00 16:00 18:00

20:00

Our solution:

* Inspired by the nature of CVR

 Model the load as a function of
voltage

* C(Calculate CVR factor from load-to-

voltage sensitivity
e No control group
* No day-on/day-off tests
* Robust to noise

P =1+ BT, 1-T]+ 5,[T,1-T]
P —active power

T —temperature

[4] Z. Wang and J. Wang, "Review on Implementation and Assessment of Conservation Voltage Reduction," IEEE Transactions on Power Systems, vol. 29, no. 3, pp. 1306-

1315, May 2014.
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CVR: implementation

To implement CVR:

* Open-loop VVC (w/o voltage feedback): change LTC tap position, line drop
compensation, voltage spread reduction, CB-based reduction and home voltage

reduction.
Disadvantages of open-loop VVC

* the depth of voltage is limited
 the control of all devices is not optimized (just based on local data)

 cannot adapt to dynamic changes of distribution networks

* Closed-loop VVC: take advantage of various measurements to determine the
best (optimal) VVC actions during certain time periods.

Advantages of closed-loop VVC
* optimal voltage reduction
* optimal energy-saving effect
 adaptive to dynamic system changes

[6] Z. Wang and J. Wang, "Review on Implementation and Assessment of Conservation Voltage Reduction," IEEE Transactions on Power Systems, vol. 29, no. 3, pp.

1306-1315, May 2014.
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Data-driven Assessment of CVR
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System Devices P(1),0(t)

v V(t)
CVR Factor |, | Load Model
C leul t oa odae
alculation Identified load L P(@),00)
A

|

‘ Identification
L Algorithm

I I
[ |
I I
I |
I |
[ I
I |
model I AN A - |
| Uy Sl
I |
I |
I |
I |
I |
I |
I |
I |

IOWA STATE UNIVERSITY



[Load Model Identification

V a
P=FK (—] Exponential load model
Vs, T
a(t) . . .
V(t Time-varying exponential load
P(t)zpo(t)( ()] "ying exp!
v, mode
|
InP(t)=InFy(t)+a(t)InV (¢) Model linearization
. v
Y, =9,0, +¢ Mathematical model of input
. y, =In P(¢) signal
- T
) (Pl‘ = _1 hl V(t)] f a(t) A
Load-to-voltage sensitivity

- 0, =[nB@) a@®]
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[Load Model Identification

E,=> A"" (v, —9:9,)°, 1€(0.9,1.0)
k=0

0, = argy min »_ A" (3, —9;0,) a(1)
k=0
- R R CVRf _ (Pcvroff B Pcvron) / Pcvroff
0,1 =0,+ Gm |:ym — (p;+1 Gm:| (chroff _K:vron)/chroff
a(t)
Vewrot (1)
P — P (1 cvroff
Gm _ I;m(pm+1 cvroff 0( )( VO )
1 + (pm+1Rm(pm+1 v ([) a(t)
|:I_Gm(p;+l:|Rm Pcvron :P()(t)( cvr;n )
Rm+1 — 1 ’
a(t)
Vesron () Veyron ()
R, = diag{ . CVR; = [1—(”‘“‘)} / (1—("“"“))
° g {,Bl } f chroff (t ) chroff (t)
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Data-driven Assessment of CVR
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Data-driven Assessment of CVR

Summary of test results of a utility *  Which feeder has the best
* Five test feeders performance in terms of CVR
e January 2012-December 2012 factors?

14 - 1
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Data-driven Assessment of CVR

CVR; in summer CVR¢ in summer
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Topic: Rolling-Horizon VVO (centralized, w/o PV smart
inverter)

Ref. [7] proposes a model predictive control (MPC)-based VVO technique
considering the integration of distributed generators and load-to-voltage
sensitivities.

* The proposed model schedules optimal tap positions of LTC and switch

status of CBs are obtained based on predictive output of wind turbines
(WTs) and PV generators (PVs).

 The exponential load model is used to capture the various load
behaviors (Compared with previous efforts on VVO which used
constant-power load model).

* The uncertainties of model predication errors are taken into account in
the proposed model.

* A scenario reduction technique is applied to enhance a tradeoff between
the accuracy of the solution and the computational burden.

[7]1Z . Wang, J. Wang, B. Chen, M. M. Begovic and Y. He, "MPC-Based Voltage/Var Optimization for Distribution Circuits With Distributed Generators and
Exponential Load Models," in IEEE Transactions on Smart Grid, vol. 5, no. 5, pp. 2412-2420, Sept. 2014.
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L.oad Models

Compared to constant-power load model, exponential load model
(ELM) 1s more accurate in practice.

In fact, the k,; and k; are related with load compositions (for
constant power load model, k,;=0, k;; = 0).

/ b Kpi
p; =PV’
/ b+ Kqi
Qf:QinQ-

Tab.1 Load type and exponent values [7]

Load Type kp kq

Residential 1.04 4.19

Commercial 1.50 - ]
Industrial 0.18 6.00

[7]1Z . Wang, J. Wang, B. Chen, M. M. Begovic and Y. He, "MPC-Based Voltage/Var Optimization for Distribution Circuits With Distributed Generators and
Exponential Load Models," in IEEE Transactions on Smart Grid, vol. 5, no. 5, pp. 2412-2420, Sept. 2014.
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MPC Predictive Control

MPC refers to algorithms that solve:
* A finite-horizon optimal control problem over the prediction horizon T,

* The obtained control variables are applied to the system over control horizon
T., where T, < T,

* At the end of the control horizon, the rest of the predicted control variable are
discarded and the entire procedure 1s repeated.

Upper bound of
actual state

- .
1 Predicted state

LT S * Lower bound of
actual state
- Prediction Horizon >
Foeey reen U
T} )
1 : Control Signal
»
rk rk"'Tr I +TP Time
|_. Con1-:r01 5l
Horizon

Fig.2 Demonstration of MPC [7]

[7]1Z . Wang, J. Wang, B. Chen, M. M. Begovic and Y. He, "MPC-Based Voltage/Var Optimization for Distribution Circuits With Distributed Generators and
Exponential Load Models," in IEEE Transactions on Smart Grid, vol. 5, no. 5, pp. 2412-2420, Sept. 2014.
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VVO Formulation

In [7], the VVO problem is formulated as a stochastic MINLP

The objective function minimizes

ity (1) the expectation of active power losses;
min K Z (Li(wr) + AVi(wy)) (2) voltage deviation along the feeder during the
1=ty prediction horizon.
* The two objectives are equally weighted (can be
changed by DSO)

subject to * w; 1s the prediction error

ﬁV;(w;] = Imax {ﬂv,;[wr]} s ﬂ.v!'_lr[mr] . . .
i = The maximum voltage deviation of all nodes.
= IV!_;{W;] - VI_:{w.r}I

\

J

2 2
tlw) =Y ri Pf-f{w; 1: Q;’-‘{w’]. vie B ¢— Active losses of the distribution network
ALY

i

Piv1 i) = Pislwr) — piv1.i(an)

Qi+1.1(@) = Qi s(wy) — Git1 1(y) __ Linear form of the DistFlow equations
riPi () + xi Qi 1 (ey)

Vl..r[wr]

Ii"ra'+l..r{‘5l»‘.r;' - VI'.I{‘{UF} —

—

[7]1Z . Wang, J. Wang, B. Chen, M. M. Begovic and Y. He, "MPC-Based Voltage/Var Optimization for Distribution Circuits With Distributed Generators and
Exponential Load Models," in IEEE Transactions on Smart Grid, vol. 5, no. 5, pp. 2412-2420, Sept. 2014.
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VVO Formulation

pii(r) = pt, — pf ()

qit(w) = f}'i,f - qﬁr(wr}

The outputs of DG unit and capacitors are represented as
negative loads.

It assumes outputs of DG units equal the predicted value
plus the predicted values plus the predicted errors w.

w belongs to an uncertainty set, which may vary with
predicted values.

2 red
pi (o) = PU7° + wiy

CBs output. ¢; represents the on/off status of the
capacitor at node i during the time interval ¢.

i
Qi; = C!'..FQ{

Vs represents the primary voltage of the transformer at

Py

Vie = 1ALV the substation, which is assumed to be 1.0. p.u.. The
secondary voltage is modeled as a function of the
primary voltage.

P;r.z _ (Pf;;mﬂ + wr) Vf’;" (@) Th.e exponentie.ll load models are used to represents
L active and reactive load consumption.
g, = (Q?frﬁd + m;) Vi“;"(m;} Pif’t’pred, Qil? épred change with a load profile which can be

obtained by using short-term load forecasting techniques.

[7]1Z . Wang, J. Wang, B. Chen, M. M. Begovic and Y. He, "MPC-Based Voltage/Var Optimization for Distribution Circuits With Distributed Generators and
Exponential Load Models," in IEEE Transactions on Smart Grid, vol. 5, no. 5, pp. 2412-2420, Sept. 2014.
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VVO Formulation

l_EEvf.r{@f)EI—FE

t+1p—T,
Y |cirsr, —ciq| < CAP™™
1=ty
4Ty =T,
Y |TAPyr, — TAP| < TAP™.

=iy

}

S—

It indicates the voltage of each node should be within a
certain range for proper operation of the distribution
circuit, € is usually set to be 0.05.

The max number of daily switching operations of LTC
and CBs are shown.

[7]1Z . Wang, J. Wang, B. Chen, M. M. Begovic and Y. He, "MPC-Based Voltage/Var Optimization for Distribution Circuits With Distributed Generators and
Exponential Load Models," in IEEE Transactions on Smart Grid, vol. 5, no. 5, pp. 2412-2420, Sept. 2014.
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Prediction errors

Errors always exist in prediction models.

In [7], the beta distribution is used to calculate the predication errors for WTs and PVs. The
beta function can be defined by two shape parameters a and [, which models the occurrence

. . red
of real power values x when a certain prediction value, Plpt has been forecasted:

f pred (.x) — .ra_l(l - .}C)ﬁ_l.

Pr)re'd
it Ui red
Shase @it + Pi ojs = 0.2 % Cit +0.21
4 =\ g7 L
7 o 1 Pi s Pf P

o5 = . :
ot (ot e+ Big) (et + Bir + 1)

In [7], a normal distribution is used to represent the forecasting uncertainty of load
consumption:

* The mean value of the normal distribution is forecasted load

* The standard deviation is set to be 2% of the expected load

All above distributions and parameters settings can be changed according to the available
information of a system.

[7]1Z . Wang, J. Wang, B. Chen, M. M. Begovic and Y. He, "MPC-Based Voltage/Var Optimization for Distribution Circuits With Distributed Generators and
Exponential Load Models," in IEEE Transactions on Smart Grid, vol. 5, no. 5, pp. 2412-2420, Sept. 2014.
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Scenario generation and reduction

Scenario generation:
* Monte-Carlo simulation is run based on forecasted power and uncertain prediction errors

to generate scenarios for DG outputs and load consumptions.

Scenario reduction:
e In order to reduce the computation efforts, backward reduction method is implemented to
reduce the number of scenarios while maintaining a good approximation of the system

uncertainty.

Stock reture rate

5 10 15 20 25 30 a5 40
time [vear]

(a)

SWCK retura rate

= 10 15 20 25 30 35
timestep [vear]

Fig.3 Examples (a) scenario generation; (b) scenario reduction
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EV and EEV

It 1s necessary to show how much improvement can be achieved if the stochastic
prediction errors are taken into account in MPC.

The random error w is replaced by its expected value w; = E(wy), and then the expected

value problem (EV), which is a deterministic optimization can be defined as:
te+Tp

EV = min z (¢:(@,) + A(@))
t=tg

Define the expected value solution as x. The expected results of using the EV

solution can be represented as N

EEV = Ni Z (£c(% ") + A(%, "))

h=1
EEV measures the performance of . The N’ is the number of scenario.

It can compare EEV and the objective value of the proposed MPC-VVO to see how
the stochastic programming outperforms the deterministic programming.

[7]1Z . Wang, J. Wang, B. Chen, M. M. Begovic and Y. He, "MPC-Based Voltage/Var Optimization for Distribution Circuits With Distributed Generators and
Exponential Load Models," in IEEE Transactions on Smart Grid, vol. 5, no. 5, pp. 2412-2420, Sept. 2014.
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Case Study

The proposed methodology has been examined on the modified 33-bus
radial distribution network.

* Two WTs and one PV

* Different types of loads

 The substation transformer 1is
with £10% tap range.

* Switched capacitors are installed
at nodes 2, 3, 6, 11, 21 and 23
(30 kVAR).

* Prediction horizon T, = 6 h

* Control horizon T, = 15 min

* 100 generated scenarios

15 scenarios after reduction

Fig.3 Test distribution system [7]

[7]1Z . Wang, J. Wang, B. Chen, M. M. Begovic and Y. He, "MPC-Based Voltage/Var Optimization for Distribution Circuits With Distributed Generators and
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Case Study

All loads in the case study are represented by ELM, the load consumption of node i
at time 7 can be represented as

The value of basic components PP and Q7 can be found in [8], the exponents of each
type of load.

Tab.2 Node type
Type Residential Commercial Industrial
2,3,4,5,6,7,8, 10, 11, 16, 17
Nodemumber | o 15,13,14,15 | 19,20,21,22 | '%23.24.23

The multipliers Mf and M? (same for all

change with time.

™

Tima

nodes) are used to make the load profile

5 1 M\\ 5 1t ,r\
g D9k - g' i e iy \‘Pi:
= fﬂw 3 o i ""."'“"v'--'llt I\yﬁ. fﬂm
3 0% f'\f 1 3 r Horsand y
5 0.7} A i 3 JM
.% 0.6 j\w}v} i ié 08t ;.nf _.'FI=_ . 3
o o Pk S A
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Time

Fig.4 Load shape multiplier

[8] M. E. Baran and F. F. Wu, “Network reconfiguration in distribution systems for loss reduction and load balancing,” IEEE Trans. Power Del., vol. 4, no. 2, pp.
1401-1407, Apr. 1989.
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Case Study

Fig. 5 shows the normalized predicted wind and solar power outputs 1n
the case study. The power base of the system 1s set to be 1| MVA.
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Fig.5 Predicted wind and solar power
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Numerical Results
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Fig.7 Switch status of CB2 and CB3 with EXL and CP
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Numerical Results

Fig. 10 shows the voltages of all nodes for different cases. Base represents the voltages
with DGs and ELM, but without OLTC and CB:s.
» Compared to base case, the proposed MPC-based VVO can largely improve the voltage

profile.

* The optimal voltage levels with CP model are relatively higher than those with ELM.
* The reason is that losses are proportional to the square of the current, and the
current of a constant-power load is inversely proportional to the voltage.

—&— 6:00 EXL
¥ | —— 12:00 EXL
—+— 18:00 EXL
24:00 EXL
—%— 600 CP
12:00 CP

— 18:00 CP
—8— 24:00 CP
—#— 1800 Base

1.4 T T ! T T T
1.03
1.028

1.0

0.99+

Voltage (p.u.)

': i~ .
0 98—
0.97

0.96

5 10 15 20 25 30
Node Number

Fig.10 Voltage profiles of EXL, CP and Base cases
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Numerical Results

Fig. 11 shows the active power losses and maximum voltage deviation of VVO
with ELM, CP, EEV and base case.
* Compared to base case, the proposed MPC-based VVO can

* reduce the maximum voltage deviation by 65% and power losses by 77%.

* Compared to EEV (deterministic model), the proposed MPC-based VVO can
* reduce the maximum voltage deviation by 49% and power losses by 72%.
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Fig.11 Active power losses and max voltage deviations
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Topic: Multi-stage VVO (hierarchical, with PV smart inverters)

Ref. [8] proposes a novel three-stage robust inverter-based VVC (TRI-
VVC) approach for high PV penetrated distribution networks.

* (Coordinating three different control stage from centralized VVC to

local VVC to reduce energy loss and mitigate voltage deviation.

* In the first stage, CBs and LTC are scheduled hourly in a rolling
horizon.

* In the second stage, PV inverters are dispatched in a short time-
window.

 In the third stage, PV inverters respond to real-time voltage
violation through local droop controllers.

* To address the uncertain PV output and load demand, a robust
optimization model 1s proposed to optimize the first two stages while
taking into account the droop voltage control support from the third
stage.

[8] C. Zhang, Y. Xu, Z. Dong and J. Ravishankar, "Three-Stage Robust Inverter-Based Voltage/Var Control for Distribution Networks With High-Level PV," in IEEE
Transactions on Smart Grid, vol. 10, no. 1, pp. 782-793, Jan. 2019.
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TRI-VVC

The TRI-VVC aims at robustly minimizing network energy losses and meanwhile maintaining
secure voltages under fast and uncertain PV generation and load demand variations.

First Stage: CB and OLTC Scheduling in a Rolling Horizon (4 hours)
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Fig.12 TRI-VVC strategy
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First Stage: CB and OLTC scheduling in rolling horizons
(1-hour)

The first stage aims at optimally scheduling CBs and an OLTC.

* The PV generation and load demand are predicted over a finite prediction horizon T (4
hours).

* The hourly CB outputs and OLTC position are optimized for the whole horizon to
minimize the energy loss while satisfying the voltage constraints.

* Only the decisions (CBs and OLTC) of the first hour are implemented. The
optimization procedure is rolled to benefit from more accurate PV output and load
forecasting in coming future with shorter leading-time.

* The inverter dispatch 1s optimized as a compensation operation under the worst case
(PV output and demand) in the first stage. The inverter dispatch is optimized again in
the second stage according to uncertainty realization.

First Stage: CB and OLTC Scheduling in a Rolling Horizon (4 hours)

Implemented Discarded

Hour-ahead interval prediction RO: optimize a,, 3, = =

= i X te M = p————— =)= 4 5
;E= o considering the worst i - . — =] 12 =
E — ~ case and the inverter = ot —o— 10z
= e 1 ~ - output dispatch a 300 o E:
z ~o Obj.: loss reduction & 200 : ,f =
> g red p inininintete it il )
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]!l \ 2 3 4 1 2 3 4
Time (hour) Time (hour)

Fig.12 TRI-VVC strategy: first stage
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Second Stage: Inverter output dispatch (15-min)

In the second stage, the PV inverters are dispatched to reduce network energy in

a loss in a shorter period, e.g., 15-min, as a recourse action for the first stage

decision after the uncertainties are realized.

* More accurate 15-min ahead predictions of PV generation and demand are
used.

* The inverter reactive power output 1s optimized and implemented for each 15-
min period within the current hour.

* The optimized inverter output is also set as the reference point for the third

1 2 3 4 f 2 3 4
Time Interval {15 min) Time Interval (15 min)

Fig.12 TRI-VVC strategy: second stage
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Third Stage: Inverter droop voltage control (real-time)

The first two stages minimize the loss while satisfying the voltage constraints under the
uncertainties in 1-hour to 15-min periods. However, within each 15-min period, the PV
output can still dramatically vary under special conditions (transient cloud movements),
where the voltage limits may be violated.

Thus, the third stage provides real-time (1-sec) reactive support for the possible voltage

violations. A droop controller is designed as:

» If a real-time local voltage 1s out of the allowed operational limits due to significant
PV output changes, the inverters generate or consume reactive power linearly with the
voltage changes.

» If the voltage 1s still within the allowed limits, the inverter output is kept to the value
optimized from the second stage.

U Third Stage: Inverter Droop Voltage Control (real time in each sLurt period)
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Fig.12 TRI-VVC strategy: third stage
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Math Formulation
The proposed TRI-VVC is formulated as the following optimization model:

Objective function is to minimize the total energy loss
in the current prediction horizon 7.
7 1s the time length of the first stage (hour)

min Z Z P‘r””

teT ieN

a@; j ¢ 1s the binary on/off decision of jth unit of the CB at

node i during period ¢.
B¢ 1s the integer position of the LTC during period ¢.

s.t. aije e {0, 1), Vi, j,t
B, e {—10,-9,...,—1,0,1,...,9,10}, V1

Allowed maximal changing time for the CB switch for

z |ﬂfu P — ] | - CBmm. Vi, j
the current 7.

teT

Y 1B — i1l < OLTC™

teT

Bt — Br—1] = OLTCY™, Vi

Allowable maximal times for the LTC position
changes during the whole horizon 7'and each period .

e e
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Math Formulation

oTiP — gmax res it It calculated the reactive power dispatch capacity of

[ = I - dis
- the inverter in the second stage Q;, P

dix - dis
_Q:'JF = QJ:‘: = Q P' Vit

Then, the dispatch range of the inverter reactive power
output Q7% is defined.

L PV/D PV/D .
w;‘“: P <p J,er’:’ /D < P/Q JO., 7. Vit - PV outpTlt and load demand P/ Qi,t can vary within
— the predicted lower and upper bound.
] i CB - ..
mm E ajj Vit - CB reactive power output @7y with on/off decision
a ..
)l(_—_l'q-';’ l:]tt'

Vie= Vo .|_. B; viar vy Substation voltage V; , with LTC position £;.

V, <V, <V Vit The voltage magnitude of each node V; ; must be kept
within the allowed deviation range.
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Math Formulation

_PP < Py < PP, it } The a.ctive power flow P;. is limited with the line
capacity.
Piy1 = P — P’”” + Pf‘[PV] P‘-D P‘:‘j:] ] Fully linearized Dist-Flow model (will be introduced in
loss chm] lat the future):
i = + » . . . .
Oir1 = Qi — 0, Qi1 QD Q’“ Active, reactive power flow and voltage relationships
RiP; + X;Q; . - :
Vieip = Vi — —, Vi, for two neighboring buses.
P = Z aik(Pik — Pii) + Z bii(Qit — O )
keki leLi Linear calculation for the complex power losses.
0 = Z cik(Pik — Pfy) + Zdi,f(Qi,I - Q7))
keKi leLi

Pj = Z (PJ:__{- +P:k)‘ Q;‘ — Z (Qf.f + Q:-F]‘ Vi

Divide the complex power flow into pieces.
keki leLi
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Math Formulation

. () _ pl=D) vy — : : .
’ [f l:?_k {[J:. i YLk Each piecewise power flow variable can vary only
P, — P =P, <=0, Vi.k within its corresponding interval.
0<0; < QU) _ QU D il — P/, and Q;, are the negative piecewise power flow
(I—1) a0 variable and they are utilized to calculate the power
oV -0 <0 <0, Vil Y o
loss when the power flow is in the reverse direction.

Xi
filx) = V—l" gilx) = V_.l Vi —
) st
ag = / : . Wik
: Pl_:u B Pl_:ﬁ—n
() 0!~
§ (@) -r(e?) " | | |
i oD _ oD s . The calculation of all the linear equation slopes.
o(r1) -x(r1")
Cik = / _ , Vi k
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Robust Optimization

The robust optimization (RO) first searches for the worst case of uncertainty
realization then optimizes the objective under the worst case.

Compared to the conventional stochastic optimization, the RO has three major

advantages:

* It does not need a probability distribution function or scenario-based data to
model the uncertainty.

* It achieves a robust solution according to the worst case instead of a solution
based on the optimal expectation.

* RO can achieve high computational efficiency, since it utilizes uncertainty sets to
model uncertainties instead of a large number of scenarios which are utilized in
stochastic optimization.

[8] C. Zhang, Y. Xu, Z. Dong and J. Ravishankar, "Three-Stage Robust Inverter-Based Voltage/Var Control for Distribution Networks With High-Level PV," in IEEE
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Robust Optimization

The RO model for the proposed TRI-VVC strategy can be formulated in the
following compact matrix form

min max min arj‘ =
X I ¥
s.1. Bx=¢ _ _ . .
_ — The constraints will be grouped into different forms.
Dx+Ey<f
Gx+Hy+Iu=j _
uelU

min E E P”” min Hmc}ii , min E E qu X
|.|:'| r
reT ieN «p PV.PP.QD Q™.P.Q.V teT ieN

* The CBs status a and the LTC position S are the first stage decision variable which are
“here-and-now” decision variable.

 The inverter output Q' is the “wait-and-see” decision variable of the second stage.

* The maximization in this “min-max-min” form is to search for the worst case of the
uncertainty where the largest energy loss would occur, i.e., the uncertainty variables are
optimized to some certain values leading to the highest energy loss.

[8] C. Zhang, Y. Xu, Z. Dong and J. Ravishankar, "Three-Stage Robust Inverter-Based Voltage/Var Control for Distribution Networks With High-Level PV," in IEEE
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Case Study

In this paper, a balanced three-phase 33-bus radial distribution

network with CBs, an OLTC and PVs installed 1s used in the case

study.

* The power flow of this system 1s assumed as balanced three-phase
flow.

* Each CB has 10 capacitor units of 30 kVAR.

e In the test, Vo = 1 p.u., VI = 0.005 p.u., the allowed operational
voltage range [Vi,Vi] = 10.95,1.05].

* The critical voltage range used in the PV inverter droop control
[VC’”i,VCTi] — [0.94,1.06].

[8] C. Zhang, Y. Xu, Z. Dong and J. Ravishankar, "Three-Stage Robust Inverter-Based Voltage/Var Control for Distribution Networks With High-Level PV," in IEEE
Transactions on Smart Grid, vol. 10, no. 1, pp. 782-793, Jan. 2019.
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Case Study

The proposed TRI-VVC is applied for 24 hours. The 24-hour rolling horizon predictions of the
PV output and the load demand are shown as below.
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Fig.13 24-hour PV output and load demand profile
The 24-hour simulation results are shown.
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Case Study

The energy loss of the system and the voltage of Bus 11 for all the

short periods are shown.

* For each period, the loss with the TRIVVC 1s much less than the
loss without VVC.

* Compared to the voltage without VVC, the TRI-VVC can keep the
bus voltage 1n each period within the allowed range.
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Fig.16 24-hour total loss results Fig.17 24-hour voltage results at Bus 11
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Case Study

The proposed TRI-VVC strategy is compared with a conventional
single-stage centralized VVC (SSC-VVC) strategy.

* In this conventional method, the operating decisions of the CBs, the OLTC and the
inverters are optimized together with rolling point predictions where only mean values
are predicted.

Strategy S5C-VVC TRI-VVC
Daily Voltage Violation Rate (%) 100 0
| S-minute Voltage Violation Rate (%) 10.80 ()
Voltage Absolute Deviation {p.u.) 0.0194 0.0171
Daily Energy Loss (MWh) 4.048 4.013

The TRI-VVC strategy can achieve effectively robust solutions
against the uncertainties to avoid voltage violation while carrying out
relatively low energy loss.

[8] C. Zhang, Y. Xu, Z. Dong and J. Ravishankar, "Three-Stage Robust Inverter-Based Voltage/Var Control for Distribution Networks With High-Level PV," in IEEE
Transactions on Smart Grid, vol. 10, no. 1, pp. 782-793, Jan. 2019.
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Summary

* VVC helps the operator mitigate dangerously low or high
voltage conditions by suggesting required action plans
for all VVC devices.

* VVO optimally manages voltage levels and reactive
power to achieve more efficient grid operation by
reducing system losses, peak demand or energy
consumption or a combination of multi-objectives.

* CVR reduces customer voltages along a distribution
circuit to reduce electricity demand and energy
consumption.

IOWA STATE UNIVERSITY
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